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We shall assume here that V(r) is continuous on (0, y)
and has the following behavior at the endpoints: it tendsA new approach to the numerical solution of boundary value

problems for differential equations, which originated in recent pa- to zero as fast or faster than 1/r 2, as r R y, and as r R 0
pers by Greengard and Rokhlin, is improved and adapted to the it does not grow faster than 1/r. Most of the physically
numerical solution of the radial Schrödinger equation. The approach meaningful potentials satisfy these conditions. The Cou-
is based on the conversion of the differential equation into an inte-

lomb potential is an exception, but it can also be handledgral equation together with the application of a spectral type Clen-
by the method described here. Under these conditions onshaw–Curtis quadrature method. Through numerical examples, the

integral equation method is shown to be superior to finite difference V(r), the differential equation (1.1a) is of a limit-point type
methods. Q 1997 Academic Press (Coddington and Levinson [1, p. 256]) and the initial value

problem (1.1a) and (1.1b) has a bounded solution on (0,
y) whose asymptotic behavior depends on normalization.

I. INTRODUCTION In the physical literature, it is customary to impose the
asymptotic conditionThe Schrödinger equation is one of the most common

equations in mathematical physics. Its solution gives the
probability amplitude of finding a particle moving in a

lim
rRy

SRl(r) 2 sin Skr 2
lf
2D2 gei(kr2lf /2)D5 0, (1.1c)force field. In the case of a two-body problem, for which,

in addition, the force field has spherical symmetry, the
corresponding three-dimensional partial differential equa- where g is an unknown constant uniquely determined by
tion can be reduced to a family of boundary value problems the problem, together with the solution Rl(r). A more
for ordinary differential equations (ODEs), detailed description of the Schrödinger equation and its

reduction to a family of ODEs can be found, e.g., in Landau
[2] and Schiff [3].F2

d 2

dr 2 1
l(l 1 1)

r 2 1 V(r)G Rl(r) 5 k2 Rl(r),

(1.1a)
For some applications it is preferable to define the S-

matrix element, see, e.g. [2, 3], by means of the asymp-0 , r , y, l 5 0, 1, 2, ....
totic expression

Here k is the wave number, V(r) is the given potential,
lim
rRy

(2iRl 2 Sl ei(kr2lf /2) 1 e2i(kr2lf /2)) 5 0,and Rl(r) is the partial radial wave function to be deter-
mined, corresponding to the angular momentum number
l. In addition, it is required that

where Sl 5 1 1 2ig.
One of the standard methods used by physicists for the

Rl(0) 5 0. (1.1b)
numerical solution of (1.1) is the Numerov method de-
scribed in Hamming [4]. Although it is simple to use and

1 Supported by NSF Grant DMS 9306357. often produces satisfactory solutions, the method has its
2 Supported by J. William Fulbright Foreign Scholarship and in part

drawback common to all explicit finite difference methods,by a grant from DAD and from a summer grant from the UCONN
namely roundoff error accumulation puts a lower boundResearch Foundation.

3 Contact person. on acceptable step-size. Therefore, if high accuracy is re-
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quired, this method and other finite difference methods wT (r) is a linear combination of the local solutions for r
restricted to any subinterval i, namelycan become unsuitable. Illustrative numerical examples for

this are given in Section V.
In this paper we describe an alternative method for the wT(r) 5 Aiyi(r) 1 Bizi(r),

solution of the radial Schrödinger equation which gives
high accuracy at a cost comparable to that of the Numerov where Ai and Bi are constants yet to be determined. These

unknown coefficients Ai and Bi can be found as a solutionalgorithm. The method is based on the reformulation of
the boundary value problem (1.1) as an integral equation of a sparse (narrow banded) system of linear equations

using, say, Gaussian elimination with partial pivoting inwhich is then discretized via the open composite Clen-
shaw–Curtis quadrature [5]. This integral equation method O(m) operations. This technique is always applicable if

the subintervals in the partition are chosen sufficientlyoriginated in papers by Greengard [6] and Greengard and
Rokhlin [7] and is improved here and adapted to the spe- small. Indeed, for sufficiently small subintervals, the norm

of the restricted integral operator becomes less than onecific features of the Schrödinger equation. This is a spectral-
type numerical method and therefore it displays, typical for and hence, a sum of the identity and such an operator

is invertible. By contrast, the method of Greengard andspectral methods (Gottlieb and Orszag [8]), superalgebraic
convergence when V(r) is analytic. Rokhlin requires solvability of restricted integral equations

to subintervals of increasing length. The solvability of theseIn our treatment we replace the boundary value problem
(1.1) by the integral equation equations cannot be assured for all cases.

In Section IV the local solutions yi and zi are obtained
at Chebyshev points in the ith subinterval using Clenshaw–

wT (r) 1
1
k

sin(kr) ET

r
cos(kr9)V(r 9)wT (r 9) dr9 Curtis quadrature. Despite the fact that the kernel of (1.2)

is not differentiable along the diagonal r 5 r 9, this quadra-
ture leads to spectral accuracy of the approximation as1

1
k

cos(kr) Er

0
sin(kr9)V(r 9)wT (r 9) dr9 (1.2)

explained in [7].
A relatively small number of Chebyshev points, n, is5 sin(kr), 0 , r , T,

needed to achieve high accuracy in each subinterval (of
partition) at the cost of O(n3). The complexity of this step,

where O(mn3), dominates the rest of the computation. The global
solution wT (r) is computed at N 5 mn points and the
overall complexity of this method is therefore O(n 2N).V(r) 5 V(r) 1

l(l 1 1)
r 2

. (1.3)
This is a spectral-type numerical technique. This means

that for a fixed interval length the error, as a function of
n, decreases faster than any power of n, provided thatThe solution of (1.2), wT(r), differs from Rl by a constant

multiple which can be recovered without difficulty from the function being approximated is infinitely differentiable
(which is the case here). This compares favorably withthe condition (1.1c) for a sufficiently large T as we shall

explain in Section II. fixed order finite difference and finite element methods.
A numerical comparison with an adaptive step-size 6thA similar Lippmann–Schwinger type integral equation

for negative energies has been used in Buendia, Guardiola, order finite difference method of Raptis and Cash [10],
given in Section V, illustrates this advantage. Yet anotherand Montoya [9] for computing bound state solutions. In

fact, our Eq. (1.2) is a truncated version of the rigorous advantage of the spectral integration method is that it
allows efficient and very accurate evaluation of definiteLippmann–Schwinger equation and is of a type of integral

equations used by Greengard and Rokhlin for boundary integrals of computed solutions of the Schrödinger equa-
tion as is demonstrated in example B of Section V. Onvalue problems on finite intervals.

In Section III we describe in detail the numerical method the other hand, if finite difference methods (with fixed or
variable step-size) are used then the solution is obtainedfor solving (1.2) on [0, T ]. The (1/r 2) singularity at the

origin is handled numerically without difficulty. Using at uniformly (or locally uniformly) spaced support points
and hence, only a relatively low order Simpson’s quadra-power series expansion near the origin, one can see that

Rl(r) converges to zero at the rate of r l11. Thus, even for ture can be used to evaluate such integrals.
We remark that the suggested modification of thel 5 0, sin(kr9)V(r 9)wT (r 9) is bounded since V(r) grows as

r22 near the origin. The method can be described briefly Greengard–Rokhlin algorithm is also applicable to two-
point boundary value problems other than the one derivedas follows. The interval [0, T ] is partitioned into m sub-

intervals. On each of the subintervals i, i 5 1, 2, ..., m, the from the Schrödinger equation and it also admits a straight-
forward generalization to systems of integral equationsrestricted integral equation is solved twice to give two local

solutions yi(r) and zi(r). It is shown that the global solution corresponding to systems of differential equation. Pre-
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liminary investigations also show that our method admits subject to the conditions (1.1b) and (1.1c). Here r is the
radial distance of the particle of mass m to the scatteringgeneralization to nonlocal potentials where the product
center, E is the energy, l is the angular momentum number,V(r)Rl(r) is replaced by an integral
V is the potential, and " is Planck’s constant divided by
2f. With k 5 Ï2mE/", we can write (2.1) asE V(r, r 9) Rl(r 9) dr9.

F d2

dr 2 1 k2G Rl(r) 5 V(r)Rl(r), (2.2)
This important generalization, for which finite difference
methods can become very cumbersome, has application to

where V(r) 5 l(l 1 1)/r2 1 V(r) and V(r) 5 (2m/"2) V (r).a wide class of problems, including three-body problems.
The following proposition shows that the solution of thisIn Section V we present several practical examples dem-
differential equation also satisfies an integral equation.onstrating the effectiveness of the integral equation

method (IEM). In order to test the integral equation PROPOSITION 1. Let Rl(r) be the unique solution of
method we compared it with the standard finite difference (1.1a)–(1.1c), and let
Numerov method for the solution of various sample prob-
lems. In one example we set V 5 l(l 1 1)/r2, in which case
the solution is known analytically in terms of Riccati– F(r) 5 sin(kr)Rl(r) 1

1
k

cos(kr)R9l (r), 0 , r , y. (2.3)
Bessel functions. The IEM showed much better accuracy
than the Numerov method. The best accuracy for the Num-

For a fixed 0 , T , y,erov method was attained at a much larger number of
points than that for the IEM with an accuracy which in

(i) if F(T) ? 0, then the integral equationfact is much worse than that of the IEM. Our experiments
also demonstrated excellent numerical properties of the
IEM, capable of computing accurately very small entries wT (r) 1

1
k

sin(kr)ET

r
cos(kr9)V(r 9)wT (r9) dr 9

(2.4a)in an array of values in the presence of relatively large
values in the same array (see Table I of Section V). These

1
1
k

cos(kr)Er

0
sin(kr9)V(r9)wT (r9) dr9 5 sin(kr),very small values of the wave function may prove to be

quite useful in some astrophysical computations where the
reaction rates are small. Similar advantages were observed

has a unique solution,in the case of a potential which is added to the l(l 1 1)/
r 2 potential term and which decays rather slowly at large
distances like r 24. Here the numerical integration has to wT (r) 5

1
F(T)

Rl(r).
proceed out to distances large enough so that the r 24 term
becomes negligible, a requirement which severely taxes

(ii) If F(T) 5 0, then (2.4a) has no solution, while thethe Numerov method, but which offers no difficulty to the
homogeneous equationIEM. We also numerically calculated an overlap integral

involving the product of two Riccati–Bessel functions and
an exponentially decaying weight factor, for which the

wT (r) 1
1
k

sin(kr) ET

r
cos(kr9)V(r 9)wT (r9) dr 9

(2.4b)
analytic solution is known. Here, too, our experiments
clearly demonstrated that the IEM is the method of choice
when high accuracy in the solution of the Schrödinger 1

1
k

cos(kr) Er

0
sin(kr9)V(r9)wT (r9) dr9 5 0

equation is required.
A Fortran code of our algorithm is available on request.

has a nontrivial solution. Each such solution is a scalar
multiple of Rl(r).

II. INTEGRAL EQUATION FORMULATION
Proof. Let

We wish to solve the radial part of the Schrödinger
equation, with E . 0,

e(r) 5 Rl(r) 1
1
k

sin(kr) ET

r
cos(kr9)V(r9)Rl(r9) dr9

F2
"2

2m
d 2

dr 2 1
"2l(l 1 1)

2mr2 1 V (r)G Rl(r) 5 ERl(r), (2.1) 1
1
k

cos(kr) Er

0
sin(kr9)V(r9)Rl(r9) dr9, 0 # r # T.
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Differentiating we get and therefore Rl(r) can be represented as a linear combina-
tion of the Riccati–Bessel functions (see Abramovitz and
Stegun [13]) which are two linearly independent solutions

e9(r) 5 R9l (r) 1 cos(kr) ET

r
cos(kr9)V(r 9)Rl(r 9) dr 9 of (2.5),

2 sin(kr) Er

0
sin(kr 9)V(r9)Rl(r 9)Rl(r 9) dr9.

Fl(r) 5 zjl(z) 5 !fz
2

Jl11/2(z) (2.6)

Differentiating one more time and using (2.2), we obtain
and

e 0(r) 5 2k2e(r).

Gl(r) 5 2zyl(z) 5 2!fz
2

Yl11/2(z), (2.7)
Thus, e(r) 5 a sin(kr) 1 b cos(kr). Since e(0) 5 0 it
follows that e(r) 5 a sin(kr). To find a, multiply e(T) by

where z 5 kr. Since wT is a multiple of Rl , wT can also bek sin(kT), multiply e9(T) by cos(kT), and add to get
expressed as a linear combination of Fl and Gl , for T
sufficiently large and r P T. Thus let

ak 5 k sin(kT)Rl(T) 1 cos(kT)R9l (T)

wT (r) 5 aFl(r) 1 bGl(r) (2.8)

or a 5 F(T). Hence, if F(T) ? 0 then wT (r) 5 (1/F(T))
Rl(r) satisfies (2.4a). If c(r) is another solution of (2.4a) and
then, again differentiating twice, one can see that c(r)
satisfies (1.1a) and from (2.4a) it follows that c(0) 5 0.

w9T (r) 5 aF 9l (r) 1 bG 9l (r). (2.9)Therefore, c(r) must be a scalar multiple of Rl(r) and
hence of wT (r). Thus, c(r) 5 wT (r) and (i) is proved.

If F(T) 5 0 then the above argument shows that The constants a and b can be determined numerically as
e(r) 5 0 and, hence, Rl(r) satisfies (2.4b). On the other follows. Substituting r 5 T into (2.8) and (2.9), multiplying
hand, if c(r) satisfies (2.4a) or (2.4b) then c(0) 5 0 and (2.8) by aG 9l (T) and (2.9) by aGl(T) one finds
c(r) satisfies (1.1a). Hence, c(r) is a scalar multiple of
Rl(r). Therefore, (2.4a) cannot have a solution, while the

a[wT (T)G9l (T) 2 w9T (T)Gl(T)]only solutions of (2.4b) are scalar multiples of Rl(r). The
proposition is proved.

5 a2[Fl(T)G9l (T) 2 F 9l (T)Gl(T)].
We do not anticipate numerical difficulties in the

case when T is near T0 for which F(T0) 5 0. In this case, Hence
wT (r) 5 (k/F(T))Rl(r) becomes large, but the relative
errors in the computed wT (r) will remain the same regard-
less of how close T is to T0 . This is similar to the inverse a 5

wT (T)G9l (T) 2 w9T (T)Gl(T)

Fl(T)G9l (T) 2 F 9l (T)Gl(T)
, (2.10)

iteration for computing eigenvectors, where one solves a
nearly singular linear system of equations, for which the
solution is an approximate eigenvector (see Golub and

where the denominator is nonzero, being the WronskianVan Loan [12, Section 7.6]). Illustrative examples corre-
of two linearly independent solutions of (2.5). Similarly,sponding to small F(T) are given in Section V.

How small can T be taken so that the asymptotic constant
g in (1.1c) can be determined to a given accuracy depends

b 5
wT(T)F 9l (T) 2 w9T(T)Fl(T)

F9l (T)Gl(T) 2 Fl(T)G9l (T)
. (2.11)on the range of the potential V (r). Since V (r) decays faster

than 1/r 2, there is no need to go to distances where 1/r 2

is negligible. Indeed, if V (r) is negligible, then Rl(r) satis-
The values of Fl and Gl and their derivatives are readilyfies the differential equation
available from the recursive relations of the type satisfied
by Bessel functions. The value of w9T (T) is found as follows.
In our treatment of (1.3), wT (r) is obtained numerically asF d 2

dr 2 2
l(l 1 1)

r 2 1 k2G Rl(r) P 0 (2.5)
a linear combination of Chebyshev polynomials. The latter,
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together with their derivatives, satisfy a 3-term recursive that the second derivatives of the left- and right-hand sides
of (2.13) coincide for any choices of u and v. To find u andrelation which is used to compute both wT(T) and

w9T (T). (We use open Clenshaw–Curtis quadrature so that v, substitute r 5 T into (2.13) and, after differentiating
(2.13), substitute r 5 T once again. This gives a 2 3 2the endpoint T is not one of the quadrature points). Given

a and b, we can now find the normalization constant N system of linear equations for u and v which is nonsingular
because its determinant is the Wronskian of Fl and Gl .for which NwT (r) satisfies the condition (2.1c). Indeed,

asymptotically, the Riccati–Bessel functions Fl(r) and Now let iRl iT 5 maxT#r,y uRl(r)u and suppose that
Gl(r) behave like sin(kr 2 lf /2) and cos(kr 2 lf /2), respec-
tively. Hence, from

2
k
Ey

T
uV(r 9)u dr 9 , «. (2.14)

N a sin Skr 2
lf
2D1 N b cos Skr 2

lf
2D

Since Fl(r) and Gl(r) are of order unity for large r, we have
p (1 1 ig) sin Skr 2

lf
2D1 g cos Skr 2

lf
2D

uRl(r) 2 (uFl(r) 1 vGl(r))u #
1
k
Er

T
uV(r 9)Rl(r 9)u dr 9

we obtain equations for N and g:

1
1
k
Ey

r
uV(r 9)Rl(r9)u dr9.

N a 5 1 1 ig

and Hence

N b 5 g.
uRl(r) 2 (uFl(r) 1 vGl(r))u

iRl(r)iT
#

2
k
Ey

T
uV(r9)u dr9 , «.

Thus,

Thus if « is a desired error bound in the computed solution,
N 5

1
a 2 ib

(2.12a) then we can take the smallest T such that (2.14) is satisfied.
For such T, for r $ T, the asymptotic behavior (2.5) already
attains the relative accuracy «. A numerical example for

and a slowly decaying potential V(r) 5 1/(r 1 r 4) presented
in Section V illustrates this property.

We remark that if the potential V (r) is a combination
g 5

b
a 2 ib

. (2.12b)
of a fast decaying potential Vf (r) and the Coulomb poten-
tial, h/r, viz.,

A conservative estimate for the truncation limit T can
be obtained as follows: Using the method of variation of

V (r) 5 Vf (r) 1 h/r,
parameters, one can show that Rl(r) satisfies the integral
equation

where h is a constant; then one can truncate at T where
Vf (r) is negligible and use the Coulomb functions instead

Rl(r) 1
1
k

Fl(r) Er

T
Gl(r 9)V(r 9)Rl(r 9) dr 9 of the Riccati–Bessel functions in Eqs. (2.5) to (2.7) to

determine the asymptotic constant.

1
1
k

Gl(r) Ey

r
Fl(r 9)V(r9)Rl(r9) dr 9 (2.13)

III. REPRESENTATION OF wT IN TERMS OF5 uFl(r) 1 vGl(r), T # r , y.
LOCAL SOLUTIONS

For the subsequent applications of the composite Clen-Equation (2.13) can be verified directly in a way similar
to the proof of Proposition 1. Indeed, it is readily seen shaw–Curtis quadrature for the numerical solution of
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(2.4a), it is convenient to consider for i 5 1, ..., m, the Assuming that yi and zi are known, we show now how to
find Ai and Bi . Let us rewrite (3.3a) asfamily of restricted integral equations,

yi(r) 1
1
k

sin(kr) Ebi

r
cos(kr9)V(r 9)yi(r 9) dr 9

Ai 5 1 2
1
k Om

p5i11
Ebp

bp21

cos(kr 9)V(r 9)wT (r 9) dr 9.

1
1
k

cos(kr) Er

bi21

sin(kr 9)V(r 9)yi(r 9) dr 9 (3.1a)

Since on [bp21 , bp], wT 5 Ap yp 1 Bpzp , we can also5 sin(kr), bi21 # r # bi ,
write

and

Ai 5 1 2 Om
p5i11

(cyp)Ap 2 Om
p5i11

(czp)Bp , (3.4)
zi(r) 1

1
k

sin(kr) Ebi

r
cos(kr9)V(r 9)zi(r 9) dr 9

1
1
k

cos(kr) Er

bi21

sin(kr 9)V(r 9)zi(r 9) dr 9 (3.1b) where, by definition,

5 cos(kr), bi21 # r # bi ,

(cyp) 5
1
k
Ebp

bp21

cos(kr 9)V(r 9)yp(r 9) dr 9 (3.5)
where b0 5 0 , b1 , ? ? ? , bm21 , bm 5 T is some
partitioning of the interval [0, T ]. For a sufficiently fine
partitioning, these equations have unique solutions yi and

andzi . We now observe that the solution wT (r) of (2.4a) on
[bi21 , bi ] is a linear combination of yi and zi . Indeed, it
follows from (2.4a) that for bi21 # r # bi ,

(czp) 5
1
k
Ebp

bp21

cos(kr 9)V(r 9)zp(r 9) dr 9. (3.6)

wT (r) 1
1
k

sin(kr) Ebi

r
cos(kr9)V(r 9)wT (r 9) dr 9

Similarly,
1

1
k

cos(kr) Er

bi21

sin(kr 9)V(r 9)wT (r 9) dr 9
(3.2)

5 S1 2
1
k
ET

bi

cos(kr 9)V(r 9)wT (r 9) dr 9D sin(kr) Bi 5 2 Oi21

p51
(syp)Ap 2 Oi21

p51
(szp)Bp , (3.7)

2
1
k

cos(kr) Ebi21

0
sin(kr 9)V(r 9)wT (r 9) dr 9.

with

For i 5 1, ..., m, let

(syp) 5
1
k
Ebp

bp21

sin(kr 9)V(r 9)yp(r 9) dr 9 (3.8)
Ai 5 1 2

1
k
ET

bi

cos(kr 9)V(r 9)wT (r 9) dr 9 (3.3a)

andand

Bi 5 2
1
k
Ebi21

0
sin(kr 9)V(r 9)wT (r 9) dr 9. (3.3b) (szp) 5

1
k
Ebp

bp21

sin(kr 9)V(r 9)zp(r 9) dr 9. (3.9)

It follows from (3.1a) and (3.1b) that Ai yi 1 Bizi satisfies
(3.2) and hence Note that Am 5 1 and B1 5 0. Combining (3.4) and (3.7)

for i 5 1, ..., m, we obtain the following system of linear
wT (r) 5 Ai yi(r) 1 Bizi(r), bi21 # r # bi . equations for the Ai’s and Bi’s,



140 GONZALES ET AL.

1 cy2 cy3 . . . cym

1 cy3 . . . cym

1
. . . cym

. . . cym

0 1

...

...

...

...

...

0 cz2 cz3 . . . czm

0 cz3 . . . czm

0
. . . czm

. . . czm

0 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1 251 2 . (3.10)
0 0

sy1
. . .

sy1
. . . 0

sy1 . . . sym22 0

sy1 . . . sym22 sym21 0

...

...

...

...

...

1 0

sz1
. . .

sz1
. . . 1

sz1 . . . szm22 1

sz1 . . . szm22 szm21 1

A1

A2

...

Am

B1

B2

...

Bm

5

1

1
...

1

0

0
...

0

For notational convenience we omit the parentheses in definitions (3.5), (3.6), (3.8), and (3.9). This system of linear
equations has a unique solution because, otherwise (2.4a) would not be uniquely solvable. Using elementary row
operations (e.g., subtracting the second row from the first and then the third row from the second, etc.) Eq. (3.10) can
be transformed into a sparse system:

1 cy2 2 1 0

1 cy3 2 1

1
. . .
. . . cym 2 1

0 1

...

...

...

...

...

0 cz2 0

0 cz3

0
. . .
. . . czm

0 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 2 1 20 0

sy1
. . .
. . . 0

sym22 0

0 sym21 0.

...

...

...

...

...

1 0

sz1 2 1
. . .
. . . 1

szm22 2 1 1

0 szm21 2 1 1

A1

A2

...

Am

B1

B2

...

Bm

5

0

0
...

0

1

0

0
...

0

.
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Changing the order of the variables, we can finally trans- are the Chebyshev polynomials. Clenshaw and Curtis [5]
showed that ifform the coefficient matrix into the block tridiagonal

system,

F(r) 5 On11

j50
bjTj (r),

then

[b0 , b1 , ..., bn]T 5 SL[a0 , a1 , ..., an]T,1
I M12 0

M21 I M23

M32
. . .

. . .
. . . I Mm21,m

0 Mm,m21 I

21
A1

B1

A2

B2

...

Am

Bm

251
0

0
...

0

1

0

2 ,

where

(3.11)

where each block is a 2 3 2 matrix and with SL 51
1 1 21 1 . . . (21)n

1 0

1

1
. . .

0 1

2Mi21,i 5 Scyi 2 1 czi

0 0
D , i 5 2, ..., m,

and

Mi,i21 5 S 0 0

syi szi 2 1
D , i 5 2, ..., m.

31
0 0

1 0 2As

Af 0 2Af

Ah
. . .

. . .
. . . 0 2 1

2(n21)

0 1
2n 0

2The coefficient matrix in (3.11) is narrow banded and,
therefore, the Gaussian elimination with partial pivoting
can be used at the expense of O(m) arithmetic operations
only (see [12, Section 5.3]) to solve (3.11).

IV. DISCRETIZATION OF LOCAL EQUATIONS is the so-called left spectral integration matrix. Here [n]T

denotes the transpose of the column vector n. Similarly, if
In this section we describe the numerical technique for

discretizing the local equations (3.1). It is based on the
Clenshaw–Curtis quadrature which is well suited for com- F̃(r) 5 E1

r
f (r 9) dr 9 5 On11

j50
b̃jTj (r),

puting antiderivatives and, hence, for discretizing integrals
present in (3.1). Assume f (r) is a function given in the

theninterval [21, 1] and define

[b̃0 , b̃1 , ..., b̃n]T 5 SR[a0 , a1 , ..., an]T,
F(r) 5 Er

21
f (r 9) dr 9, 21 # r # 1.

where the right spectral integration matrix is given by
Further, assume that f (r) can be expanded in a finite set
of Chebyshev polynomials, i.e.,

f (r) 5 On
j50

ajTj (r), 21 # r # 1, (4.1)

SR 5 1
1 . . . 1

21 0

21
. . .

0 21
2where

Tj (r) 5 cos( j arccos(r)), j 5 0, 1, ..., n,
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operations. These and other properties of discrete cosine
transforms can be found in Van Loan [14]. Thus the vector

[a0 , a1 , ..., an]T 5 C21[ f (t0), f (t1), ..., f (tn)]T

31
0 0

1 0 2As

Af 0 2Af

Ah
. . .

. . .
. . . 0 2 1

2(n21)

0 1
2n 0

2 .
can be easily found from values of f at t0 , ..., tn . In par-
ticular,

3
F(t0)

...

F(tn)
45 C SLC21 3

f (t0)
...

f (tn)
4 (4.3a)Since Tj(1) 5 1 for all j, we also have that

F(1) 5 E1

21
f (r 9) dr 9 5 On11

j50
bj . (4.2a)

and, similarly,

Using (4.1) one can find the Chebyshev–Fourier coeffi-
cients, aj , of f (r) as follows. Let tk , k 5 0, ..., n, denote
the zeros of Tn11 , viz., 3

F̃ (t0)
...

F̃(tn)
45 C SRC21 3

f (t0)
...

f(tn)
4 . (4.3b)

tk 5 cos
(2k 1 1)f
2(n 1 1)

,

We remark that in writing the equality sign in (4.3a)
so that and (4.3b), we assume that bn11 is set to zero. This is an

acceptable assumption because f (r) is itself only approxi-
mately represented by the polynomial in (4.1) and theTj (tk) 5 cos

(2k 1 1) jf
2(n 1 1)

, k, j 5 0, ..., n.
overall accuracy of approximation is not affected.

The formulas (4.3) can be generalized for intervals [bi21 ,
Substituting r 5 tk , k 5 0, ..., n, into (4.1), we obtain that bi] other than [21, 1] by the linear change of variable

h(t) 5 As(bi 2 bi21)t 1 As(bi 1 bi21).3
f (t0)

...

f (tn)
45 C 3

a0

...

an
4 , (4.2b)

Thus if

where C is a discrete cosine transform matrix whose ele- t
(i)
j 5 h(tj), j 5 0, ..., n,

ments are specified by

thenCkj 5 Tj (tk), k, j 5 0, ..., n.

The matrix C has orthogonal columns, that is,

3
F(t

(i)
0 )

...

F(t
(i)
n )
45

(bi 2 bi21)
2

C SLC21 3
f (t

(i)
0 )
...

f (t
(i)
n )
4 (4.4a)

CTC 5 diag Sn,
n
2

, ...,
n
2D.

Therefore,
and, similarly,

C21 5 diag S1
n

,
2
n

, ...,
2
nD CT.

3
F̃(t

(i)
0 )

...

F̃(t
(i)
n )
45

(bi 2 bi21)
2

C SRC21 3
f (t

(i)
0 )
...

f (t
(i)
n )
4 . (4.4b)

Moreover, the matrix C (as well as CT and C21) can be
applied to a vector at the cost of O(n log n) arithmetic
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Using (4.4) we can now discretize the local equation solving local equations can be reduced by the use of parallel
processors since the calculation of Y and Z on each subin-(3.1a) as
terval is independent.

Using the sparseness of SL and SR and the fast implemen-FI1
(bi 2bi21)

2k
(Dsi

CSRC21 Dcivi
1Dci

CSLC21 Dsivi
)GYi5si , tation of the discrete cosine transform, one may also try

to reduce the cost of solving (4.5) by the use of iterative
(4.5a) algorithms. This will be investigated separately.

After Ai and Bi are found we finally obtain
where

Yi 5 [yi(t
(i)
0 ), ..., yi(t

(i)
n )]T, 3

wT (t
(i)
0 )

...

wT (t
(i)
n )
4P AiYi 1 BiZi .si 5 [sin(kt

(i)
0 ), ..., sin(kt

(i)
n )]T,

Dci
5 diag(cos(kt

(i)
0 ), ..., cos(kt

(i)
n )),

To estimate the accuracy of approximation, we use theDsivi
5 diag(sin(kt

(i)
0 )V(t

(i)
0 ), ..., sin(kt

(i)
n )V(t

(i)
n )),

following property of Chebyshev expansions.

and, similarly, Dsi
and Dcivi

. In much the same way PROPOSITION 2. Let f [ Cp[21, 1], p . 1 and

FI1
(bi 2bi21)

2k
(Dsi

CSRC21 Dcivi
1Dci

CSLC21 Dsivi
)GZi5ci . f(r) 5 Oy

j50
ajTj (r), 21 # r # 1.

(4.5b)
Then

The solution of (4.5a) and (4.5b) can be done using
standard software, e.g., Gaussian elimination with partial

uaju # H2
f
Ef

0
U d p

dup f (cos u)U duJ 1
j p 5

c
j ppivoting at the cost of O(n3) arithmetic operations. The

solutions Yi and Zi give approximate values to the local
functions yi(r) and zi(r) at the Chebyshev nodes in each

andof the subintervals [bi21 , bi], i 5 1, ..., m. The inner products
(3.5), (3.6), (3.8), and (3.9) can now be obtained using (4.2)
as follows: U f (r) 2 On

j50
ajTj (r)U#

c
p 2 1

1
np21 .

(cyi) 5
bi 2 bi21

2k
[1, 1, ..., 1]SRC21Dcivi

Yi ,
The proof of this proposition is outlined in [8, p. 29]. It

implies that if f (r) is analytic then the convergence of the
(czi) 5

bi 2 bi21

2k
[1, 1, ..., 1]SRC21Dcivi

Zi , Chebyshev expansion is superalgebraic.
Using this proposition, one can show (see [7]) the fol-

lowing.(syi) 5
bi 2 bi21

2k
[1, 1, ..., 1]SLC21Dsivi

Yi ,

THEOREM 1. Suppose V(r) is (p 1 1)-times continu-
ously differentiable for 0 , r , y. Let wT be the solution(szi) 5

bi 2 bi21

2k
[1, 1, ..., 1]SLC21Dsivi

Zi .
of (2.4a) and let Ai , Bi , Yi , and Zi be the solutions of (3.10),
(4.5a), and (4.5b), respectively. Then

The computation of each of these inner products takes
O(n) arithmetic operations after [1, 1, ..., 1]SL,RC21 is pre-
computed at the cost of O(n3) flops and is negligible, rela-
tive to the cost of solving (4.5). These inner products are I 3wT (t

(i)
0 )

...

wT (t
(i)
n )
42 (AiYi 1 BiZi)I

y

#
Cp

np ,
substituted into (3.11) and the weights Ai, Bi are obtained
at the cost of O(m) arithmetic operations. The coefficient
in O(m) is of order unity and hence much smaller than n3

in O(n3m) needed to compute Yi , Zi , i 5 1, ..., m. Thus where t
(i)
0 , ..., t

(i)
n are the Chebyshev points in the corre-

sponding subintervals of partition and Cp is a constant whichthe overall cost of the computation is dominated by the
O(n3m) cost of solving local equations (4.5). The cost of depends on p only.
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This spectral-type high accuracy of approximation of wT Bessel function and we obtain the accuracy of our method
by comparing the numerical answer with the analytic one.with AiYi 1 BiZi, for modest values of n, is illustrated with

numerical examples in the next section. The high accuracy Subsequently, we obtain an overlap integral between two
such solutions and a weight function for which the answerof approximation here is due to the special feature of

Clenshaw–Curtis quadrature, the highly accurate compu- is again known analytically, in order to test the feasibility
of calculating quantum mechanical matrix elements. Bothtation of the antiderivative. Since the kernel of the integral

equation (3.1) is not smooth across the diagonal hr 5 r 9j, applications bring out the power of the IEM in that the
solution has high accuracy and, at the same time, the valuesthe standard Nystrom-type discretization methods will fail

to give high accuracy in this case (see, e.g., Delves and of the solution are automatically provided at the Cheby-
shev points where they are needed for performing theMohamed [15]).

Some Gauss-type quadratures can be used instead of overlap integral according to the Clenshaw–Curtis quadra-
ture procedure. The IEM can also calculate the solutionthe Clenshaw–Curtis quadrature with similar results, most

notably the Gauss–Legendre quadrature for which a prop- at other points without further loss of accuracy at the cost
of O(n) operations per point, where n is the number ofosition similar to Proposition 2 is valid (Gottlieb and Ors-

zag [8, p. 37]). We prefer the former because the support Chebyshev points per subinterval (e.g., n 5 16 in our exper-
iments). In the third case, we apply our method to thepoints are readily available algebraically, rather than from

tables as Legendre points, the transition from values of a calculation of solutions of the Schrödinger equation, for
long-range potentials. Finally, we consider the choice of Tfunction to its expansion coefficients and vice versa in

(4.2b) can be done with the fast cosine transform and such that F(T) P 0. In our examples such choice of T has
no effect on the accuracy of the computed solution. Allthe transition matrices from expansion coefficients of a

function to its antiderivatives, SL , SR are so simple due to calculations have been done in double precision Fortran
on IBM-3090 mainframe. Values of Bessel functions usedtrigonometric identities enjoyed by Chebyshev polynomi-

als (see Clenshaw and Curtis [5]). in our experiments were obtained by calling the Interna-
tional Mathematical Scientific Library (IMSL) subroutinesFinally, we remark that the values of wT are found inside

each of the subintervals of partition at Chebyshev nodes DBSJS and DBSYS.
t

(i)
0 , ..., t

(i)
n . The value of wT at T (or any other point in [0,

A. Solution of the IEM for a Riccati–BesselT], for that matter) can be found as follows. Using C21 we
Function Casecan find Chebyshev–Fourier coefficients in [bi21 , bi],

We take for the potential V in our integral equation
(1.2), the expression3

a(i)
0

...

a(i)
n
45 C21 3

wT(t
(i)
0 )

...

wT(t
(i)
n )
4 .

V(r) 5 l(l 1 1)/r 2 (5.1)

in which case the solution is given by the Riccati–Bessel
Thus, function,

Fl(k, r) 5 zjl(z), z 5 kr. (5.2)wT(r) 5 On
j50

a(i)
j Tj(hi(r)), bi21 # r # bi.

Here k is the wave number, r is the radial distance, l is
The value of wT(r) (or w9T(r)) for r ? t

(i)
k can be found the angular momentum number, and jl(z) is a spherical

using the recursion satisfied by Chebyshev polynomials, Bessel function as defined in [13]. We denote the numerical
solution of the integral equation (1.2) by wT(r). In order

Tj11(x) 5 2xTj (x) 2 Tj21(x). to obtain a measure of the accuracy of wT , we obtain, for
comparison, the values of the function Fl from the IMSL,
by calling the subroutine DBSJS for the cylindrical BesselIn fact, we have used a backward (numerically more reli-
function. The normalization constant Nl is obtained fromable) recursion suggested in [5].
(2.12a) which requires a call to the IMSL subroutines at
r 5 T. The maximum of the absolute value of the differenceV. NUMERICAL EXAMPLES
between the two functions wT and Fl , in the range of inte-
gration [0, T ] is denoted as ‘‘Error,’’ and is calculated forIn this section we document the numerical properties of

the integral equation method (IEM) by means of several the two cases l 5 6, k 5 1 fm21 and l 5 8, k 5 40 fm21.
In both cases we choose the upper value of the radialexamples. In the first application we choose a case for

which the analytic solution is related to a known Riccati– range, T, equal to 50 fm but it can be chosen arbitrarily
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with an arbitrary slope, say R9l (0) 5 1, and then to scale
the computed solution of the initial value problem to satisfy
(1.1c) much in the same way as described in Section II
above. In this procedure the radial interval is divided into
equally spaced mesh of points with a mesh size h and, by
using Taylor expansions for the function and its derivatives,
one obtains the approximate value of Rl from the values
at two previous points according to the recursion

un 5 2un21 2 un22 1
h2

12
(u0n 1 10u0n21 1 u0n22 ). (5.4)

Here u is the numerical solution of (5.3) and the second
derivatives u0i are calculated in terms of ui from (5.3).

The accuracy of Numerov’s method, which is of O(h4)
FIG. 1. Error in the numerical calculation of a Riccati–Bessel func- (see Stoer and Bulirsch [16, p. 540]), is shown by means

tion, in terms of the number of points in the interval 0 # r # 50 fm. The of the open squares in Fig. 1. It is clear from the figure
integral equation method, IEM, is represented by circles. The two finite

that the accuracy in Numerov’s method increases muchdifference methods, the fixed step size method of Numerov and the
less quickly with the number of points than the IEM. Thevariable step-size method of Raptis and Cash are represented by squares

and triangles, respectively. The Riccati–Bessel function is defined in (5.2), maximum accuracy in Numerov’s method of 0.2 3 1028 is
the value of the angular momentum number is l 5 6, the wave number reached for 12,800 points and corresponds to a step size
is k 5 1 fm21 and the error is obtained by comparison with a Bessel of h 5 0.0039 fm. This number of points is 32 times larger
function called through the IMSL library. The calculation is done in

than the number required by the IEM to reach its maxi-Fortran in double precision (approximately 14 significant figures) on an
mum accuracy of 0.13 3 10213. Moreover, the accuracyIBM mainframe 3090 computer.
itself is worse by five orders of magnitude.

We also compared the IEM with the more sophisticated
variable step-size method of Raptis and Cash [10], based

according to the analysis in Section II. The solution of the on fourth-order Numerov and sixth-order of their own.
integral equation is obtained by dividing the integration Similar variable step-size finite difference schemes ap-
range [0, T] into m partitions of equal length. The number peared in recent papers by Simos and Avdelas and Simos;
of Chebyshev points n in each partition is taken at the (see [11] and references therein). As expected, being a
fixed value of 16, as suggested in [7]. For each successive higher order variable step-size method, it achieves higher
calculation the number of intervals is increased by a factor accuracy at fewer mesh points than Numerov but still is
of two. The results for the error, for the case l 5 6, k 5 not able to achieve the accuracy of the IEM. After a certain
1 fm21, are shown by the open circles in Fig. 1 as a function value of the input tolerance is reached, the further decrease
of the total number of integration points 16 3 m. The in tolerance does not result in any change in step-size
figure shows that the accuracy begins to improve rapidly selection and, hence, does not improve the accuracy; see
once the number of intervals is larger than 3 and the error Figs. 1 and 2. The same behaviour has been observed
reaches a minimum value of the order of magnitude of in our numerical experiments (not reported here) with
machine accuracy for 25 intervals (400 points). Beyond the ‘‘summed’’ Numerov method, recently discussed by
this point, the accumulation of rounding errors prevent Friar [17].
further improvement. As expressed in terms of number of The second case, l 5 8, k 5 40 fm21, and T 5 50 fm is
points per oscillation of the function F (i.e., per wavelength, illustrated in Fig. 2. This case is more probing because the
2f /k) the maximum accuracy is reached for 50 points per wave number is now 40 times larger. Again, the IEM error
oscillation (i.e., [2f /k]/[50/400] > 50). decreases rapidly once the number of points is larger or

In order to compare the IEM’s accuracy with commonly equal to 1600 (100 intervals) and reaches a minimum value
used finite difference methods, we have also calculated the of 0.2 3 10212 for 12,800 points. The average number of
solution of the corresponding differential equation points per wavelength of the function is in this case 40.

This is slightly smaller than what it was in the previous
case, but the accumulation of roundoff errors prevents theS d 2

dr 2 2
l(l 1 1)

r 2 1 k2D Rl(r) 5 0 (5.3)
maximum accuracy from reaching as high a value as in the
first case. Nevertheless, as the number of points increases,
the further accumulation of roundoff errors is very small,by the so-called Numerov finite difference method. Since

(1.1) is actually an eigenfunction problem, one can start similar to what was the case in Fig. 1, and illustrates the
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Figures 1 through 3 illustrate the absolute value of the
error, but they do not give a good account of the relative
error which occurs to the left of the turning point, where
the function wT becomes very small, of the order of O(r l11).
In order to test the error to the left of the turning point,
a calculation of the functions Fl(r) was performed with the
IEM for l 5 100, k 5 1. The value T of the upper cutoff
T was taken at 105 fm and the number of partitions was
taken to be m 5 150 (the corresponding number of points
is 2400, which is 150 points per wavelength or three times
the number of points previously needed to reach maximum
accuracy in Fig. 1). The normalization of the solution of
the IEM was obtained by comparison with the value of
Fl , calculated by the series solution in powers of kr at r 5
100 fm, described in 10.1.2 of [13]. The result is compared

FIG. 2. Same as Fig. 1 for l 5 8 and k 5 40 fm21. The solid diamonds with values given in [13] and also with values obtained
represent the error of the functions yi and zi , defined in Eqs. (3.1) and through the IMSL subroutine and listed in Table I. With
calculated in each subinterval i. The error is the maximum of the last

the exception of the smallest value of r (10 fm), thethree Chebyshev coefficients for both yi and zi in all intervals.
agreement is good to within 11 significant figures with the
values listed in [13]. At r 5 10 fm, the IMSL routine
returned zeros for the answer, due to underflows.

Table I demonstrates that the IEM method is capablestability of the IEM. By comparison, Numerov’s method
requires 409,600 points to reach a maximum accuracy of of obtaining accurate small values in the presence of large

values. It also demonstrates that the O(1/r 2) singularity of0.7 3 1028. This number of points is 256 times larger than
the number of points where IEM reaches its maximum ac- the potential near the origin does not affect the accuracy

of the computed solution near the origin noticeably. Dur-curacy.
When an analytic result is not available for comparison ing the course of this experiment, it also became clear that

the Bessel function subroutine present in the IMSL librarywith the IEM result, then, as recommended in [5], one can
use as a measure of the accuracy of the IEM the magnitude of the IBM mainframe has a limited range of parameter

space. For example, when x 5 kr 5 10, the maximum valueof the last three Chebyshev expansion coefficients of the
solution wT in each partition which is automatically ob- of l for which IMSL provides answers for the regular Bessel

function is 92. For x 5 20, lmax 5 109; for x 5 40, lmax 5tained during the IEM calculation. If the last three coeffi-
cients are sufficiently small then the remaining coefficients 107; for x 5 60, lmax 5 47; for x 5 50, lmax 5 45. The IEM,
may be considered negligible (see Proposition 2). This is
borne out by our calculations. The maximum for all parti-
tions of the absolute value of the last Chebyshev coefficient
in each partition is displayed by means of the solid squares
in Fig. 2. One sees that this measure tracks well the actual
accuracy achieved by the IEM. A similar pattern of behav-
ior was observed in all the other numerical experiments
with IEM (most were not reported here). Therefore we
recommend that the optimal choice for the number of
subintervals be obtained by finding the minimum on the
line of solid points. Further increase in the number of
subintervals is not expected to improve the accuracy, but
rather it causes an increased accumulation of rounding
errors.

The dependence of the accumulation of the roundoff
errors on the length of the integration interval, T, is illus-
trated in Fig. 3. While in Numerov’s method the error
increases by several orders of magnitude as T is increased

FIG. 3. Dependence of the error on the length of the integration
from 10 to 50 fm, in the IEM the error changes by less interval T. The squares represent the Numerov’s results, the circles repre-
than an order of magnitude. This result again supports the sent IEM’s results. The solid (open) symbols correspond to T 5 10 fm

(25 fm). The other parameters are the same as in Fig. 1.insensitivity of the IEM to roundoff errors.
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TABLE I In the above, Q is the Legendre function of the second
kind [13, (8.1.3)] and the argument z isAccuracy IEM for the Riccati–Bessel Function Fl to the Left

of the Turning Point

z 5 (k2
1 1 k2

2 1 l2)/(2k1k2). (5.7)
r( fm) F a

l Methodb

10 5.832040182E-90 AS Expression (5.6) is evaluated recursively starting with l 5
10 — IMSL 0, in which case I0 is calculated from the expression [18]
10 5.832040178E-90 IEM

50 1.019012263E-22 AS
50 1.019012262932E-22 IMSL I0 5

3k1

2k2
1

1
8k2

2
(3l2 2 3k2

1 1 k2
2)ln Sl2 1 (k1 1 k2)2

l2 1 (k1 2 k2)2D .
50 1.019012262931E-22 IEM

(5.8)
100 1.088047701E-02 AS
100 1.088047701144E-02 IMSL
100 1.088047701143E-02 IEM This integral is computed in three different ways: (i) Fl

and Fl12 are computed by the IEM, the formula (4.2) is used
a The function Fl is defined in (5.2), k 5 1 fm21, l 5 100. to approximate the integral on each of the subintervals ofb The entries AS were taken from a Table by [13], the IMSL results

partition, and the total integral is obtained by summing-are obtained from IMSL subroutine DBSJS, the IEM values are obtained
up the integrals obtained for each partition; (ii) same asfrom the IEM code, and are normalized as explained in the text.
above with Fl and Fl12 obtained through IMSL; and (iii)
Fl and Fl12 are obtained through the IMSL subroutine at
Gauss–Legendre points in each subinterval of partition;however, continued to give accurate values, as compared
the Gauss–Legendre quadrature is used to approximatewith [13], beyond this range of IMSL parameter space.
the integral in each of the subintervals, and the total is
obtained by summing-up the results from each partition.B. An Overlap Integral
The results as a function of the number of subintervals,

Here we present a practical example for which high
m, are given in Table II. Here (C-C) stands for Clenshaw–

accuracy in the computed solution is essential. Again, to
Curtis and (G-L) for Gauss–Legendre. The exact valuebe able to estimate errors exactly we chose, as in Subsection
obtained from (5.6) is 2.66825093E-11. The fact that allA, V(r) 5 l(l 1 1)/r 2 so that the solution is known and
three methods converge to a number different from thegiven by (5.2). The quantities of interest are
actual value is due to the truncation error at T 5 50 fm.

In the last column of Table II the functions F were
Il(k1, k2, l) 5 Ey

0
Fl(k1, r)

exp(2lr)
r

Fl12(k2 , r) dr. (5.5) obtained from the solution of (5.3) by means of Numerov’s
method, and the integral was performed using Simpson’s
rule. The accuracy of one significant figure, achieved withThese quantities, for varying values of k1 and k2, are inputs
16 3 2048 points, did not improve with further increasein the calculation in momentum space of the scattering T-
in the number of integration points. A higher order integra-matrix between two nucleons or a nucleon and a pion.
tion method, the Romberg scheme of order h10, appliedWhen the energy is high, the range of the wave numbers
on the same Numerov’s solution, gave the same low accu-k1 and k2 becomes very large, and severe cancellations
racy. The (G-L) 1 IMSL method gives better results thanoccur in the integral. For example, in the case of scattering
the (C-C) 1 IMSL for small values of m. This has alreadyof two nucleons at energies of the order of tens of GeV,
been noted by Sloane [19], and a more detailed comparisonthe wave numbers can be as high as 40 fm21 and the angular
between the (G-L) and (C-C) methods can be found inmomentum numbers can be equally high.
Webb [20]. However, this advantage is offset in applica-In our numerical example we choose l1 5 6, k1 5 1 fm21;
tions for which the known functions F are replaced byl2 5 8, k2 5 40 fm21, and l 5 0.7 fm21. In this case the
unknown functions which are the solutions of the Schröd-maximum of the integrand is 1.45 3 1023 fm21, while the
inger equation with a nontrivial potential. In this case theresulting integral is 0.27 3 10210, a cancellation of seven
solutions first have to be evaluated by the IEM and, hence,significant figures.
(C-C) 1 IEM is expected to be the method of choice.For comparison purposes this integral can be calculated

analytically by means of the recursion relation (see [18])
C. The Case of a Slowly Decaying Potential

In Subsection A the accuracy of the IEM was discussedIl11 5 S2l 1 5
2l 1 3D k1

k2
FIl 1

1
2

Ql12(z)G2
1
2

Ql11(z). (5.6)
for the case V(r) 5 0, i.e., for Riccati–Bessel functions. In
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TABLE II

Accuracy of the Integral I6(1, 40, 0.7) as a Function of ma

m (C-C) 1 IEM (C-C) 1 IMSL (G-L) 1 IMSL Numerov 1 Simpson

64 21.72021473E-10 —
128 2.95278631E-11 2.66799012E-11 2.66825063E-11 —
256 2.66829124E-11 2.66825087E-11 2.66825081E-11 —
512 2.66825073E-11 2.66825079E-11 2.66825076E-11 1.65456977E-11

1024 2.66825077E-11 2.66825076E-11 2.66825075E-11 2.01987872E-11
2048 2.66825078E-11 2.66825076E-11 2.66825073E-11 2.19477918E-11

a The range of integration is [0, 50] fm; the total number of points per partition is 16.

this subsection, the IEM is tested for the case that V(r) is where
a slowly decaying potential of the form V(r) 5 1/(r 1 r4).
The r24 decay of this potential occurs in the collision be-
tween atoms. We calculate the solution with the IEM for «1 5 2

1
k
Ey

T
FlV(r)Rl dr Q 2«,

l 5 5, k 5 5 fm21, and n 5 16 for various values of the
truncation limit T. For each value of T we choose the

«2 5 2
1
k
Ey

T
GlV(r)Rl dr Q 2«,number of partitions such that m Q kT/f. This is approxi-

mately the number of partitions for which highest accuracy
was achieved for the evaluation of Riccati–Bessel func-

withtions.
Since the analytic solution is not available, the errors

were computed by comparing with the IEM results ob-
« Q

1
2k

Ey

T
V(r) dr (5.9)tained at T 5 900. Errors in the constant g, defined in

(2.12) are given in column 4 of Table III (for the sake of
easier display we represented here the constant g by a real

andnumber b/a).
The asymptotic constant g, being the most important

quantity in the solution, deserves special attention. In this
gy 5 2

1
k
Ey

0
FlV(r)Rl dr.particular real case one obtains from (2.13), by setting

u 5 1 and v 5 gT , the result

Hence,

gT 5
2(1/k) ET

0
FlV(r)Rl dr

1 2 (1/k) Ey

T
GlV(r)Rl dr

.
ugy 2 gTu # «(1 1 gT).

From the above, one finds that the absolute error in gT is Similarly,
given by

ugT̄ 2 gT u # «̄(1 1 gT ) (5.10a)gy 2 gT P «1 1 «2gT (1 1 «2),

TABLE III

Error as a Function of T

No. of Truncation Numerical error Estimated
partitions m limit T gT in gT error (5.10)

166 100 0.3948555996568E-01 3.33E-08 3.3E-08
333 200 0.3948558910348E-01 4.13E-09 4.1E-09

1166 700 0.3948559317246E-01 5.25E-11 5.2E-11
1500 900 0.3948559322496E-01 — —
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TABLE IV than it was ever possible to achieve in finite difference
methods. (ii) The computational complexity is linear in theError in Relation to F(T)
number of points, similar to the situation in finite difference

Truncation limit T( fm) F(T) Relative error in wT methods. The second property is especially noteworthy
because usually matrices associated with the discretization

24.752094306051730 8.52E-10 6.7E-12 of integral equations are not sparse.
24.752094304873030 1.18E-12 6.7E-12

Our method is well suited for applications in which a24.752094304871433 2.93E-14 7.0E-12
high accuracy is required. Examples of such applications

36.543277438730000 1.17E-10 2.4E-11 are: scattering at high energies, calculation of overlap inte-
36.543277437100190 3.25E-12 2.4E-11 grals involving highly oscillatory functions, and atomic col-
36.543277437053801 2.88E-14 2.4E-11 lisions in the presence of slowly decaying potentials.

We plan to expand the method, which is applied here
to the case of positive energies, also, to negative energies,
as well as to nonlocal potentials.
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